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For classical point particles in a box A with potential energy H (N) = N - 1(1/2) 
~iv~j= I V(xi, xj) we investigate the canonical ensemble for large N. We prove 
that as N - ~  oo the correlation functions are determined by the global minima of 
a certain free energy functional. Locally the distribution of particles is given by 
a superposition of Poisson fields. We study the particular case A = [ -  ~L, ~L] 
and V(x, y ) =  - f l c o s ( x -  y ) , L  >O, fl > 0 .  
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1. INTRODUCTION 

Let us consider a finite box A into which more and more classical point 
particles are thrown. To keep the energy of all particles proportional to 
their number we assume a potential energy of the form 

U 
H ( N )  = N - I  1 ~ V ( x i , x j )  (1 .1 )  

i ~ j =  1 

This corresponds to a weak, as I/N, interaction. The particles are distri- 
buted inside the box according to the canonical ensemble Z ( N ) - i e x p  
[-~H(N)]. We want to know then the structure of typical particle configu- 
rations for large N. 

The motivation for this work is fourfold. 
(i) The particular case of gravitating particles, V(x,y)=- ~lx- 

y]-I ,  has been studied extensively. O-4) The canonical ensemble is expected 
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to model either the distributions of stars in a star cluster or in a galaxy or 
the distribution of the galaxies themselves. Formally in the limit as N-+ oo 
the potential tp generated by the mass distribution is determined by the 
isothermal Lane-Emden equation 

A~ = 47r~e-r162 (1.2) 

cf. Ref. 5 for a discussion of this and related equations and for an historical 
account. For a statistical mechanics derivation of that equation one has to 
confine the system to a box and has to smoothen out the local singularity of 
the gravitational potential. 

(ii) In the temperature-dependent Thomas-Fermi theory one consid- 
ers fermions in A with the scaled quantum mechanical Hamiltonian (6-8) 

N N 
H (N) = N -2/3 ~ ( 2 m ) - ' p f +  N - t  1 -~ ~ V(xi,xj) (1.3) 

j =  1 iv~j= 1 

(The spatial scale is here chosen already as the one on which the Thomas-  
Fermi density varies.) The cases of physical interest are when V is either the 
gravitational potential or the electronic repulsive Coulomb potential to- 
gether with the external potential provided by the nuclei. In the latter case 
usually the ground state, corresponding to /3 = ~ ,  is considered. Our 
problem is then the classical counterpart to the usual Thomas-Fermi 
theory. 

(iii) If the potential V is not stable, as is the case for the gravitational 
potential, then the usual thermodynamic limit does not exist. The scaling 
(1.1) offers a possibility of still to investigate the canonical distribution for 
large N. 

(iv) The dynamics of classical particles interacting through the poten- 
tial (1.1) for large N has been investigated in Refs. 9-11. In this limit the 
particle density in the one particle phase space is governed by the Vlasov 
equation. We study here the static problem. 

In statistical mechanics the problem we posed is well known as a mean 
field limit, because a given particle should roughly see the mean potential 
field produced by all the other particles. This kind of limit has been 
extensively studied; cf. Refs. 12 and 13 as review articles. Therefore, first of 
all, we have to explain why we think that our problem has not yet been 
covered. 

In the van der Waals limit for a continuous particle system one takes 
first the thermodynamic limit and subsequently the limit of a weak force. 
The idea behind is that the weak part of the potential has still a range 
which is small compared to the size of .the system. In our case the size of 
the system and the range of the potential are of the same order. Conse- 
quently no comparable results can be expected. 

Although rather unnatural from a physical point of view, we may 
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think of (1.1) as the Hamiltonian of a one-dimensional spin system. The 
single-site space is then (A, dx). In this context our problem has been 
studied for the particular case V(x i , x j )=  xixj. (1" 13-15, 19) These models are 
refered to as Curie-Weiss models. The limit N ~  oo is proved using the 
s ine-Gordon transformation. (15) Our argument is based on the subadditiv- 
ity of entropy and works for a general class of potentials. In other 
work (~3'14) one assumes certain conditions (as KMS) that the infinite 
volume equilibrium state has to satisfy and investigates then the class of 
solutions. This procedure has two drawbacks. Firstly, it leaves open the 
connection to the original finite N problem. Secondly, by this method it 
seems hard to rule out solutions which are stationary points of the free 
energy but not global minima. 

One can also consider the lattice gas approximation to (1.1), i.e., A is 
replaced by a lattice with lattice spacing 1 / N  and there is at most one 
particle per lattice site. For  A = [0, 1] our model is then a special case of the 
circle model with single-site measure 80 + 81 . If V(x,  y)  is positive definite 
the circle model has been investigated in Refs. 20 and 21 and for general V 
in the recent preprint Ref. 22. Of course, the mean field equation for the 
circle model with single-site measure 80 + 81 turns out to be identical to 
ours. The proof in Ref. 22 uses however Laplace's method in function 
space. 

We will show that the mass distribution is, in the limit N---> c~, a 
superposition of the global minima of the free energy functional 

1 F(p) = $ Sas y)+ fl-l fAdxp(x)logo(x ) 
(1.4) 

, 4  

>. o, JAdx p(x)  = 1 0 

Stationary points of F satisfy the appropriate generalization of the Lane-  
Emden equation. Locally the distribution of particles is a superposition of 
Poisson fields. On the superposition itself, in general, we have no informa- 
tion. Typical cases where it can be determined are when either the mini- 
mum of F is unique or certain symmetries are present. 

This result leaves open to determine the global minima of F. We will 
prove that for potentials of positive type F has a unique minimum and that, 
in general, for sufficiently small V, i.e., at high temperatures, F has a 
unique minimum. At low temperatures one expects the occurrence of 
several global minima corresponding to the existence of a phase transition. 

To have an example for this phenomenon we investigate a one- 
dimensional system in the box A = [ - ~rL, rrL] with the interaction potential 
V(x,  y)  = - fl cos(x - y), fl > 0, L > 0. (Note that this potential is unsta- 
ble.) If L is not an integer, then F has a unique minimum. If L is an integer, 
then for fl-<< 2 F has a unique minimum and the mass is uniformly 
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distributed over the box. For fl > 2 the system clusters. Since the location 
of the cluster is not fixed, the mass distribution is a uniform superposition 
over all possible locations. 

2. WEAK CONVERGENCE OF THE CANONICAL DISTRIBUTIONS 
AS N - > ~  

Let A c N d be compact. We consider N classical point particles in A 
distributed according to the canonical equilibrium measure 

I t (N)(dxl  . . . .  , dXN) = Z ( N ) - ' e x p [ -  H ( N ) ( X l ,  . . . , XN) ] dx ,  . . . d x  N 

(2.1) 
The energy of a particle configuration (x 1 . . . . .  xN) ~ A N is given by 

N 

H ( N ) ( x I  , X N )  = N - 1  1 . . . .  ~ ~ V ( x i , x j )  (2.2) 
i v ~ j  = 1 

We are interested in the limit N ~ oo. Then the number of particles in every 
region however small increases proportional to N. However, because of the 
mean field scaling (2.2) of the potential, the energy of any given particle 
remains finite. 

For any Borel set A C A let n(N)(A)  be the number of particles in A. 
The superscript (N) indicates that the random variables n (N) (A) depend on 
N through the probability distribution/z (N) . Our goal is to investigate the 
random field 

1 n ( N ) ( A ) / A  C A) (2.3) 

as N ~ oo. We will show that the limit field is supported by those absolutely 
continuous mass distributions which minimize the free energy functional 
(1.4). Locally the limit field is a generally nondegenerate superposition of 
Poisson fields. 

Let f] = A N. We consider /~(N) as a probability measure on f~ and 
investigate the weak limit of /~(N) as N ~ o o .  From this the claimed 
properties of the random field ( ( 1 / N ) n ( N ) ( A ) }  will be deduced. The proof 
is based on two observations: 

(i) Any weak limit point of (/~(N)/N = 1 , 2 , . . .  } is a permutation 
invariant measure on A N. The Hewitt-Savage decomposition theorem en- 
sures then that any limit measure is an integral over product measures. 

(ii) By subadditivity of the entropy the free energy per particle exists 
as N---> oo and equals the free energy of any limit point of ( / t (N) /N  = 1, 
2 . . . .  }. 

(i) combined with (ii) implies the desired support properties. In specific 
examples one often has additional information, such as symmetry, which 
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ensures the weak convergence of ~(N) and as a consequence the weak 
convergence of the random field { (1 /N)n  (N)(A)}. 

The potential is assumed to have the following two properties (a) V is 
symmetric, i.e., V(x, y) = V(y,  x), and (b) V is Lipschitz continuous, i.e., 

IV(x ,Y)  - V(x' ,Y')I  <<- L(Ix - x'l + lY -Y ' I )  (2.4) 

Since A is compact, by (2.4), supl V(x, Y)I = M+ is finite. Lipschitz conti- 
nuity is a somewhat restrictive assumption. For our technique we need it in 
order to be able to conclude from the weak convergence of the nth 
marginal distribution the convergence of its entropy. 

Let 

. . . . .  = Z ( N ) - '  dxn+ 1 exp[ . . . . .  f2U)(x, X.) f . . . d x  u -- H(NI(xl  XN) ] 

(2.5) 
be the density of the nth marginal measure, f ( U ) ( x l , . . . ,  x , )dx  I . . .  dx, 
= ~(N) (dxl . . .  dx,). 

Lemma 1. For each n ,N  with 1 < n < N and for each n-tuple 
( x l  . . . . .  Xn) E A n 

0 < f~(N)(x I . . . . .  Xn) < IA]-%xp(2nM+ ) (2.6) 

where [A I denotes the volume of A. 

tZ'root. Let / ] ( " ) ( x  I . . . . .  x , ) = ( 1 / N ) ( 1 / 2 ) ~ j = l V ( x i , x j ) ,  
H ( U - n ) ( X n + l ,  . , x N ) = ( 1 / N ) ( 1 / 2 ) 2 u r  a n d  
W (., N- ,)(X 1 . . . . .  XN) = ( 1 / N ) •  7=12~=, + 1V(xi, xj). Then 

f.(lV)(x 1 . . . . .  xn) 

<<. Z(N)-~ f dX.+l . . .  dXNeXp(--/t (n) - -  w ( n ,  N - n )  _ I - t (N -n ) )  

< e"M+Z(N) - l f d x , + ,  . . .  dx N e x p ( - / ~ ( U - , ) )  (2.7) 

By Jensen's inequality 

[[AI-n;dXl . . .dXNeXp(--II(N-n')]  -1 

x f dx, . . .  dxu e x p ( - / ~  (") - W (n 'N-n)  - I~  ( N - n ) )  

/> ]A[%xp{ - f d x , . . ,  dXN(It(") + W("'N-"))exp( - /~(N-, , ) )  

•  dx, . . .dXNexp(- - I~(N-n))]  -1 ) 

/> [Ai"exp(- nM+) �9 (2.8) 
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Lemma 2. 
n < N and (x  1 . . . . .  xn) , (y  I . . . . .  Yn) E A n 

If,,(N)( x ,  . . . .  , xn) -- I ( N ) ( y l  . . . . .  Yn)[ <~ Man ~ Ix;- yjl 
j= l  

with M, a independent of n and N. 

Proof. w e  reformulate 

If.(U)(Xl . . . . .  xn) - f ( N ) ( y l  . . . . .  Yn)l 

= f o l d t z ( N ) - l f d x n + l . . . d X N  

exp [ - -  tH (N) (Yl . . . . .  Yn, xn+ 1 ,  �9 �9 �9 , N XN) 
L 

There exist positive numbers M and a, such that for all 

(2.9) 

- ( I  - t ) m N ) ( x ,  . . . . .  x N ) ]  

• ( H ( N ) ( x I  . . . . .  XN) -- H ( N ) ( y l  . . . . .  Yn ,Xn+l . . . . .  XN) } 

(2.10) 

By (2.4) 

[H(U)(x, . . . . .  XN) -- H(N)(y, . . . . .  y , , x , + l , . . . ,  XN) I <<, L ~ [x j -y j[  
j = l  

(2.11) 

The remaining estimate is identical to the one of Lemma 1. �9 
Let $ be the set of all probability measures on A N= ~ which are 

invariant under permutations, i.e.,/z ~ $ if and only if/~(A 1 • . . .  • Am) 
= ll(Ap( 0 • . . .  • Ap(m) ) for arbitrary Borel sets A 1 . . . . .  A m C A, all 
permutations p and all m. Let $ a c  $ be the set of all permutation 
invariant measures/~ on f~ such that 

(i) ~I"A" -- ~, (dx ,  . . .  dx,)  = f , ( x  1 . . . . .  x , )dx~ . . .  dx,  

(ii) the densities fn are Lipsehitz continuous with Lipschitz constant 
Man in the sense of (2.9) for some M. 

I .emma 3. The set of weak limit points of { /~ (u ) /N  = 1,2 . . . .  } is 
contained in g a . 

Proof. Since A is compact, ~ is compact in the product topology. 
Therefore any weak limit point is a probability measure and, since/~(U) is 
symmetric, necessarily in $. Let /~(N)---~/S, weakly. Then limuf~ (N) =fn 
pointwise. Therefore f ,  satisfies (2.9). �9 

We want to write measures in g a as integrals over product measures. 
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Let 9ID 1 be the set of all probability measures on A. For p E ~ l  we define 
the product measure/~_ = p X p X . .  on s According to the theorem of 
Hewitt and Savage (16)" to each /~ E ~  there exists a unique probability 
measure 1,(dp[ I~) on ~ 1  such that 

= f ,,(do I (2.12) 

For the definition of the integral we refer to Ref. 16. 
Let ~&~ c 9Vc' be the set of all probability measures p on A with 

Lemma 4. Let/~ ~ S~. Then p(dp] I~) is concentrated on ~lO~. 

Proof .  Sa is a convex set. We have to show that the extreme points 
of $~ are the product measures in $~. Then the claim follows from the 
proof given in Ref. 16. 

Reference 16, Theorem 5.2 implies t ha t / 5  with p E 9fD~ is an extreme 
point of $~. Conversely let /~ E $~ be an extreme point with i~,(dx a 

. . .  d x , ) = f , ( x  1 . . . .  , x , ) d x , . . ,  dx  n. For some A c A let us define the 
probability measures/~1,/~2 E $ by 

. . . . .  l~J ( dxl 

rr 1-'2 l~;(dx ,  . . .  d x , )  = ( x ) d x  dx  f , + i ( x , x ,  . . . . .  X n )  d x  1 . . .  dx  n 
L JA\A J A\A 

(2.13) 

Clearly,/~1,/~2 E $a and 

+If., (..14) 
Since # is supposed to be extremal, necessarily/~J =/~J for all A and n. This 
implies f n ( x l  . . . . .  x , )  = IIy= l f l ( x j )  and therefore/~ is a product measure. 

[] 

We come now to the thermodynamic part of our argument. For #~ E Sa 
let 

-fax, . . .  d x n f , ( x l , . . .  , x n ) l o g f n ( x  I . . . . .  xn) (2.15) S ( tz.) 

be the entropy of the nth marginal measure. Then the mean entropy of/~ is 
defined by 

s(/~) = lim -1 S(/~.) (2.16) 
n - - ~  n 

Note that for / t  E Sa (1/n)S(~n) is bounded independently of/~., since the 
/~n's are uniformly bounded and since A is compact. Let 

E(#~,) = #L,(H(")) (2.17) 
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be the average energy of/~n. Then the mean energy of/~ is defined by 

e(t t)  = ,--,~lim ~E(~n) (2.18) 

Finally we define the free energy and the mean free energy by 

F(g,) = E(gn) - S(g , ) ,  f(/x) = e ( g )  - s(/~) (2.19) 

and 

Lemma 5. F o r  IZ ~ $.  

S( (2.20) 

f  2(dx,dx2)V(Xl,X2) (2.21) 

Proof. (2.21) follows from the definition and (2.12). (2.20) is proved 
in Ref. 17. 

Theorem 1. Let N(k) be any subsequence such that limk_,~/~(W(k)) 
= /~ weakly. Then 

1 --- = inf lim ~r F(/~ (x)) f(/x) ~ 'es.  - f ( # )  (2.22) 
N - + ~  

Proof. S i n c e  ~(N(k)) ~ t~ weakly, 

lim 1 k ~  ~ E(/z (u(k))) = e(be) (2.23) 

By subadditivity of entropy for any N and n 

-N n N \ t'W-n[N/nl} 

where [b] stands for the integer part of b. By Lemma 1 S t` (N) ~ is \ P'N-- n[ N/n] ) 
bounded independently of N. By Lemma 2 the densities f(U(k)) converge 
pointwise to the limit density f , .  Therefore 

lim S( ~(n N(k))) = L.~( IXn) ( 2 . 2 5 )  
k-->~ \ 

We conclude that 

lim sup k~oo ~(k~ 1 S (  l~(N(k))) <<.limsu p k_~o~ ~(k~ ----- ~ l [ N(k) ls(  IL(nN(k)) ) 

= __1 S(/~.) (2.26) 
n 
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Since n is arbitrary, by definition (2.16) 

1 S" (N(~)), s(#)  (2.27) limk_,o~sup ~ (,/x ) -4< 

and therefore, by (2.23), 

lim inf 1 k--)oo ~ (k )  F(~(N(k))) > f(ix ) (2.28) 

On the other hand, by the finite volume variational principle, 

F( -4< inf 1 ~ ( N ) )  ~'~G N F(/Z;v ) (2.29) 

Therefore 

lim sup 1 F( ~t (N(k))) < inf f (  tt') < f(I~) (2.30) 
k---) ~ ~ /z' ~$~ " " 

(2.28) and (2.30) prove the claim. �9 
Let us consider the free energy functional on ~d~ a defined by 

F(p) = f(tLo) = �89 f dx dy O(x)p(y) V(x, y) + f dx O(x)log O(x) (2.3 l) 

On 9K a F is bounded and continuous in the sup-norm. Let 9Kf c ~ a  be 
the set of such O's for which F takes its global minimum. 

Theorem 2. Let/t be any weak limit point of { tL (N)/N = l, 2 . . . .  }. 
Then its decomposition measure v(dpllt ) is concentrated on @K/. 

Proof. By definition, for all P E ~)K I F(p) = f =  inf,  EGf(tO. Sup- 
pose that v(doIit ) is not concentrated on zYLf. Then f (#)  - fv(do]t t ) f( t tp)  
> f which contradicts Theorem 1. �9 

The variational problem to find the minimum of F(p) can be some- 
what rephrased. Taking the functional derivative of (2.31) one finds that 
p E %f  has to satisfy 

f  xexp[- f ,)] 
p ~ ~ a . (2.32) can have solutions which do not minimize F(O ). (Solutions 
of (2.32) are stationary points of F.) Therefore in addition one has to 
require that 

P(o) = - �89 f dx ay o(x)o(y)V(x, y ) -  logf dxexp[- fay o(y)V(x, y)] 
(2.33) 

with P solution of (2.32) takes its global minimum. 
We will refer to (2.32) together with the minimizing condition (2.33) as 

the Lane-Emden equation (LE equation). 
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Remark. Our proof uses very little of the structure of (A, dx). Theo- 
rem 2 remains valid, if A is replaced by a complete, separable metric space 
X and dx by a probability measure m(dx)  on X and provided the potential 
V satisfies certain growth conditions. The measure /~(N) on X N is then 
given by 

[ 1  ~ ] bt (N) = Z ( N ) - '  I I  m(dxj)exp ~,, V(x i ,x j )  
j = 1 2N  i§ = 1 

and p(x) is a density with respect to m(dx).  

3. GLOBAL AND LOCAL STRUCTURE OF THE RANDOM FIELD OF 
PARTICLES 

Physically it is more natural and more transparent to think of particle 
configurations as a random field over N d. 

We facilitate the description by introducing some notation. Let $ (•d) 
be the space of rapidly decreasing functions and let $'(N d) be the space of 
tempered distributions. We equip $'(N d) with the weak*-topology. For 
n ~ $ ' (R d) and g E g(N d) let n(g)  be the linear functional n evaluated at g. 
The functions n ~-> n(g)  are continuous by definition. To each configura- 
tion ( x l , . . . ,  xN) E A N we associate an element of g '(R d) by 

N 
1 j ~ l  (~'~ (3.1) s : ( x l , . . . , X u ) ~  ~ = 

where 8 x is the Dirac delta distribution at x. Then #(N) induces a probabil- 
ity measure ( . ) N  on $'(N d) by 

( " ) N  = /~(N) o S - '  (3.2) 

By definition there are no particles outside A, i.e., n(g)  = 0 ( . )N-a .s .  for 
g's with support in ]~d\A. If necessary we extend functions originally 
defined only on A by zero outside A. Note that now all N dependence is in 
the measure ( . ) N "  

We say that ( . ) N  converges in the sense of moments, if for all m, 
gl . . . . .  gm ~ $ (Rd) 

lira ( n ( g l ) . . .  n(gm))N= ( n ( g l ) . . .  n(gm) ) (3.3) N--~ oo 

Proposition 1. Any limit point of ( ( . ) N ,  N =  1,2 . . . .  } in the 
sense of moments is concentrated on 6"JEf considered as a subset of $ '(Nd). 

Of interest is also the local structure of the random field (n(g),  ( �9 )N). 
Let q E A ~ Then we want to consider the particle distribution locally in a 
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neighborhood of size N -] /a  around q. The size of this neighborhood 
shrinks in such a way that its density of particles remains finite. Let 
g E g (Ra). Then we define 

(~-q, Ng)(x) = N g ( N  ~/d(x -- q)) (3.4) 

The local measure at q is defined by 

( " )N(q)just  describes the local distribution of particles around q. 

Proposi t ion 2. Any limit point of {(- )N(q), N- -  1,2 . . . .  } in the 
sense of moments is a superposition of Poisson fields with constant density 
o(q) and weight v(do I I~). 

Proof. One computes that for g's with disjoint support 

" =  N 

of x, 
j = l  

• + N - 1 / a x  1 . . . .  , q + N-1/dXm) + O ( 1 / N )  (3.6) 

Let N ( k )  be a subsequence such that/~(U(~)) ~/X weakly as k--> oo. Then by 
Lipschitz continuity 

lim f(ff(l,))(q + N ( k ) - ] / d x  I . . . .  , q + U(k)-~/aXm) 
k---~ oo \ 

= fm(q . . . . .  q) = f,,(aol )o(q) m (3.7) 

Therefore ( . )N(k) (q) - -~( ' ) (q )  in the sense of moments and ( . ) ( q )  is a 
superposition of Poisson fields. II 

We have obtained the usual physical picture. As N ~  ce the discrete 
field tends to a continuous field concentrated on such mass distributions 
which minimize the free energy functional (2.31). Locally the system looks 
like a superposition of ideal gases with uniform density. 

4. UNIQUENESS OF SOLUTIONS 

We show that the free energy functional F [cf. (2.31)] has a unique 
minimum if either V is sufficiently small or if V is of positive type. In the 
following section we discuss an example where F has two distinct global 
minima. 
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Theorem 3. If SUPx,y[V(x,y)[ < 1/2, then (2.32) admits a unique 
solution p. In this case 

w e a k -  lim /~(U)= /~o (4.1) N---> oo 

Proof. Let  K : f + , l ( A ) ~ e l + , , ( A )  = ( p E I 2 , ( A ) / p / >  0, liP[I, = 1} be 
defined by 

K(p)(x) = Z - l e x p [  - fdyo(y)g(x, y)] (4.2) 

We show that, if [[VI[ = < 1/2, then K is a contraction. Let (Vp)(x) 
= fdy p(y) V(x, y). Then 

I lK(o , )  - g (p2 ) l l l  

= I l e x p ( -  Vpl - log Z l )  - e x p ( -  V p =  - logZ2)l l~ 

= foadtexp(-  [ ( 1 -  t)(Vpl + logZl)-I- t(Vp2 + logZ2)]} 

X ( Vpl - Vp2 + log Z 1 - log Z2) 1 

< foo,dt 11[ Zl_ ,exp(_  VPl)]l-t[ Z 2 , e x p ( _  Vp2)]t[[ 1 

x [11 g(m - o2)11oo + [log Z 1 - -  log Zz[ ] (4.3) 

By H61der inequality 

f d x  [ rpl(X)]t[ q02(x) ] 1-'  < 1 (4.4) 

for any q01, cp2 E EI+,I(A ). Furthermore 

[ logZl-  logZ21 = log fdxexp[-(gm)(x)] -logfdxexp[-(go2)(x)] 

-< II V ( p ]  - 02)11 ~ ( 4 . 5 )  

Therefore 

fig(P1) - K(p2)II~ < 211VII~IIPl - 02111 (4 .6)  

If 21[ V]loo < 1, then K is a contraction, and K(p) = p has a unique solution 
by the contraction mapping principle. �9 

T h e o r e m  4. If V is of positive type, i.e., for each f E E2(A) 

f f(x) V(x, y)f(y) dx dy > 0 (4.7) 

then (2.32) admits a unique solution p and (4.1) holds. 
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Proof. With the condition stated, the free energy functional (2.31) is 
convex. This follows, with (4.7), from the equality 

f p~(x)p~(y) V(x,  y)  dx dy 

= afol(X)O,(y)V(x, y ) d x d y +  (1 -  )fo2(x)o2(y)V(x, y ) d x d y  

- a(1 - a).;[p2(x)  - p,(x)] V(x,  Y)[P2(Y) - P,(Y)] dxdy 

(4.8) 

with 
04 = ap, + (1 - a)p2, a E l 0 ,  1] 

and from the concavity of the entropy functional. On s the free energy +,1 
functional is even strictly convex, proving uniqueness of extrema. A second 
proof follows by considering the second functional derivative of F(p), 
which is a functional of positive type, by (4.7), for all 0 >/0. This contra- 
dicts the existence of a local maximum in case of two global minima 
of F(p). 

5. THE C O S I N E  M O D E L  

We investigate the LE equation for particles in the interval [ - ~rL, 7rL] 
= A interacting through the pair potential 

g(x ,  y)  = - fl cos(x - y)  (5.1) 

This "cosine model" was suggested in Ref. 14. It seems to be one of the 
simplest models with a continuous potential which exhibits a phase transi- 
tion. The thermodynamic parameters are L > 0 and fl ~ N. For fl < 0 the 
potential (5.1) is of positive type and therefore, by Theorem 4, the LE 
equation has a unique solution. Despite the fact that the potential does not 
decay at infinity, the usual thermodynamic limit exists. The thermodynamic 
functions are identical to those of the ideal gas. (18) Henceforth we assume 
fl > 0. Then the potential is unstable and the usual thermodynamic limit 
does not exist. As pointed out by the referee for L = 1 our model inter- 
preted as a spin model is equivalent to a Curie-Weiss X - Y  model. 

Lemma 6. (i) If L is not integer, then any solution of the self- 
consistency equation (2.32) is given by 

p( x) = Z - 'exp(afi  cos x) (5.2) 

with 

a = Z - 1 f ,~L dx cos x exp (aft cos x ) 
J -- ~'L 

( ) Z = dx exp aft cos x 
J -- ~L 

(5.3) 

(5.4) 
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(ii) If L is integer, then any solution of the self-consistency equation (2.32) 
is of the form 

O~ (x) = Z - lexp[ aft cos(x - c~)l (5.2a) 

with ~ E [0, 2~r] and a solution of (5.3), (5.4). 

Proof.  Inserting (5.1) in (2.32) we obtain 

O(x) = 2~ - ]exp(afl cos x)exp(b f l  sin x)  (5.5) 
with 

a =  N-' f axcosxexp[ f l ( a c o s x  + b s i n x ) ]  (5.6) 

b= N-l f dxsinxexp[ B(acosx + b sinx)] (5.7) 

= f d x  exp[ f l ( a c o s x  + b sinx)  ] (5.8) 

We distinguish three cases. (i) a v a 0 and sin ~rL v ~ 0. F rom 

f exp(afl cosx)  (5.9) - 1 dx  exp(bfl sin x) ffxx d b = -----z 
afl_Z 

we obtain by partial integration and  with (5.6) 

1 ,. exp(afl cos ~rL)[exp(bfl sin ~rL) - exp( - bfl sin ~rL) ] = 0 (5.10) aBZ 
thus b = 0. (ii) a = 0 and sin qrL ~ 0. F rom (5.6) 

0 = f d x  cosx exp(bfl s inx)  (5.11) 

thus b = 0. (iii) If sin~rL = 0, then we set in (5.6) and (5.7) a = ffcosa,  
b = /~s in  a. Adding (5.6) and (5.7) and using the periodicity of the cosine in 
[ -  "rrL, rrL] it follows that  ff satisfies (5.3). �9 

By L e m m a  6 we only have to determine the parameter  a E R. The free 
energy as a function of a is 

F ( a )  = �89 fla 2 - l o g Z  (5.12) 

We have to f ind the global minima of F. Let 

= Z - l f d x  cos x exp(afl cos x) (5.13) f ( a )  

Then stationary points of F satisfy 

a = f ( a )  (5.14) 

L e m m a  7. Let 0 < L ~< I and let a > 0 be a solution of (5.14). Then 

f ' ( a )  < 1 (5.15) 
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Proof. We expand 

(af )n 
f(a) = Z -~ 

n=0 n! 

(aft) n 
= z - '  ~" 

n=0~'a n! 

We also expand 

- -  fdx (cos x) "+' 

af  f dx(cosx)n 1 n + 2  

(5.16) 

+ afl[ 2 + Z - l ~ (aft )n 
L n=0 n! 

The sum equals aflf(a) = a2f. Therefore 

z =  ~ (aft)" 
.=0 n! (J dx (cosx)" (5.17) 

Since each term in this sum is positive, Jensen's inequality applied to the 
second term of (5.16) gives 

2sin~'L [exp(afcos~rL) _ 11 
a = f(a) > Zaf  cos ~'L 

-1 

- - n  f dx(cosx)"] (5.18) 

We have 

fl ~ 1  < 1 + 2  + a2fl Za2fl2 sin ~rLcos ~rL [1-exp(aflcos~rL)] (5.19) 

f ' (a)= -~ f dx(cosx)2exp(aBcosx)- a2B 

- ZB ~ (af l)"fdx(cosx) .+2_a2 f i n ,  
n=0 

f ~ ( a f ) n [  2 (cos.L)n+lsinqrL 
= Z  n! n=O 

+ n + 1 (dx(cosx)n] _ a2f 
n + 2 J  j 

Again by Jensen's inequality 

2 sin 7rL [ 1 - exp(af cos 7rL)] + - -  
f '( a) < Za2fl cos ~rL 

+ fl 1 + a2fl a2 fl 
2 +  a2fl 

(5.20) 

2 sin ~rL aZ exp(af cos ~rL) 

(5.21) 
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Inserting (5.19) we arrive at 

f ' (a)  < 1 + 2 sin ~r__.____~L exp(a/3 cos 7rL) 
aZ 

• aBcos~rL [ e x p ( - a f l c o s ~ L ) -  11 + 1 (5.22) 

To show that the term in the square brackets is negative, we distinguish two 
cases. (i) If cos 7rL < 0, then 

[ aflcosqrL] 
2 + a2fl e x p ( - a / 3  cos ~rL) - 1 + < 0 (5.23) 

afl cos ~rL 2 + a2fl 

since e ~ - 1 - x / ( 2  + a2fl) >1 0 for x >/0. (ii) If cos~rL ~ 0, then (5.13) and 
(5.14) implies the bound 

a >/coscrL (5.24) 

Inserting in (5.22) we have, since [ e x p ( - a f t  cos~rL) - 1] < 0, 

2 +  a2fl 
a/3cosrrL [exp(-af lcos~rL)  - 1] + 1 

2 + a/3 cos ~rL 
<~ aflcos~rL [ e x p ( - a / 3 c o s g r L ) -  1] + 1 -<< 0 (5.25) 

since (2 + x)(1/x)(e  -x - 1) + 1 ~< 0 for x >I 0. �9 

T h e o r e m  5. Let V(x,  y) = - / 3  cos(x - y)  and let A = [ -  rrL, rrL] 
with /3, L > 0. Then for L noninteger the LE equation has a unique 
solution. For L integer and/3  < 2 the LE equation has a unique solution. 
For L integer and/3 > 2 the LE equation has the solutions 

p~(x) = Z-~exp[ao/3COS(X - a) ] ,  a ~ [0,2~r] (5.26) 

with a o > 0 the unique solution of (5.14) restricted to a > 0. 

Proof. We discuss only the case 0 < L < 1. The remainder of the 
phase diagram follows by symmetry. 

Let 0 < L < 1. With Z = Z(a), for a ~ 0 Z(a) > Z ( - a )  and therefore 
F(a) < F ( - a ) .  Hence the minimum of F has to occur for a > 0. Now 
f(0) > 0. S i n c e f ( a ) ~  1 as a--> oo, there is at least one a0 > 0 which satisfies 
f(ao) = a o. Since by Lemma 7 f ' (ao)< 1, it follows that a o is the only 
solution of a = f (a)  for a > 0. 

Let L = 1. Then f ( 0 ) =  0 and therefore a = 0 is always a solution of 
(5.14). Since f ( - a ) - -  - f ( a ) ,  if a 0 is a solution of (5.14), so is - a  0. Since 
F(a) = F ( - a ) ,  to every global minimum of F for a >/0 there is one with 
a < 0 .  If / 3 < 2 ,  then f ' ( 0 ) < l .  The existence of an a 0 > 0  such that 
ao = f(ao) contradicts Lemma 7. If /3 > 2, then f ' (0) > 1 and F"(0)  < 0. 
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Since f(a) ~ 1 as a ---) oe there exists at least one further a o > 0 satisfying 
a o = f(ao). Since by Lemma 7 f'(ao) < 1, there can be at most one. [] 

Since for the cosine model we have a complete solution of the LE 
equation, Theorem 5 can be strengthened to the following: 

Proposi t ion 3. Let V ( x ,  y )  = - f l  cos(x - y)  and let A = [ -  ~rL, ~rL] 
with fl, L > 0. Then limN~ ~ tt (s) exists. If either L is noninteger or L 
integer with fl < 2, then p(dp[/t) is concentrated on a single p. If L is 
integer and fl > 2, then p({p,/a E B }l/t) = (1/2~r)fBda with B C [0,2~r]. 

Proof. The superposition with equal weight follows from symmetry 
under the shift by c~. [] 

The free energy is given by 

The internal energy 

F(  fl, L) = main F ( a  ) (5.27) 

u( fl, L) = ( OflF( fl'L) ) L (5 .28 )  

is continuous, whereas the mechanical pressure 

( ~flF( fl, L) ) (5.29) 
P ( f l ' L )  = B 

is discontinuous at phase coexistence points. In this sense the phase 
transition is of first order. 
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